
Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

Working with Randomness
using MATLAB

1

Probability and Random Processes
ECS 315

Office Hours:
BKD, 4th floor of Sirindhralai building

Monday 9:30-10:30
Monday 14:00-16:00
Thursday 16:00-17:00

rand function: a preview

2

 Generate an array of uniformly
distributed pseudorandom numbers.
 The pseudorandom values are drawn

from the standard uniform
distribution on the open interval
(0,1).

 rand returns a scalar.

 rand(m,n) or rand([m,n])
returns an m-by-n matrix.
 rand(n) returns an n-by-n matrix

>> rand
ans =

0.8147
>> rand(10,2)
ans =

0.9058 0.9706
0.1270 0.9572
0.9134 0.4854
0.6324 0.8003
0.0975 0.1419
0.2785 0.4218
0.5469 0.9157
0.9575 0.7922
0.9649 0.9595
0.1576 0.6557

rand function: Histogram

3

 The generation is unbiased in the sense that “any number in
the range is as likely to occur as another number.”

 Histogram is flat over the interval (0,1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 104

hist(rand(1,100)) hist(rand(1,1e6))

Roughly
the same
height

randn function: a preview

4

 Generate an array of normally distributed pseudorandom
numbers

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

hist(randn(1,1e6),20)

randi function

5

 Generate uniformly distributed pseudorandom integers
 randi(imax) returns a scalar value between 1 and
imax.

 randi(imax,m,n) and randi(imax,[m,n])
return an m-by-n matrix containing pseudorandom integer
values drawn from the discrete uniform distribution on the
interval [1,imax].
 randi(imax) is the same as randi(imax,1).

 randi([imin,imax],...) returns an array
containing integer values drawn from the discrete uniform
distribution on the interval [imin,imax].

We have already seen the rand and randn functions.

randi function: examples

6

>> randi([0,1])
ans =

0
>> randi([0,1],10,2)
ans =

1 0
1 0
1 0
1 1
1 1
0 0
1 1
0 0
1 0
0 0

>> randi([1,6])
ans =

5
>> randi([1,6],10,2)
ans =

5 1
2 1
3 3
3 6
4 3
5 4
5 2
2 5
5 2
4 4

Coin Tosses: Dice Rolls

T, H

randi function: examples

7

>> S = ['T','H']
S =
TH
>> S(randi([1,2]))
ans =
H
>> S(randi([1,2],10,2))
ans =
TT
HH
HT
TT
HT
TT
TH
HT
HH
HT

Coin Tosses:

An interesting number

8

 Here is an interesting number:

0.814723686393179

 This is the first number produced by the MATLAB random
number generator with its default settings.

 Start up a fresh MATLAB, set format long, type
rand, and it’s the number you get.
 Verified in MATLAB 2013a,b

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

[Numerical Recipes, Ch 7]

Pseudorandom Number

9

 Random numbers were originally either manually or mechanically
generated, by using such techniques as spinning wheels, or dice rolling,
or card shuffling.

 The modern approach is to use a computer to successively generate
pseudorandom numbers.
 Although they are deterministically generated, they approximate

independent uniform (0, 1) random variables.
 So, “random” numbers in MATLAB are not unpredictable. They are

generated by a deterministic algorithm.
 The algorithm is designed to be sufficiently complicated so that its output appears to

be random to someone who does not know the algorithm, and can pass various
statistical tests of randomness.

 Our assumption
 Assume that we have a good pseudorandom number generators.
 Example: the rand command in MATLAB.

A Million Random Digits with 100,000
Normal Deviates

10

 Published in 1955 by the RAND Corporation.
 Production started in 1947 by an electronic simulation of a

roulette wheel attached to a computer.
 Became a standard reference.
 In addition to being available in book form, one could also order

the digits on a series of punched cards.
 The book was reissued in 2001 (ISBN 0-8330-3047-7)

 It has generated many humorous user reviews on Amazon.com.

 http://www.rand.org/pubs/monograph_reports/MR1418.html

Random number book

11

(Truly) random digits from physical
mechanisms

12

 Employ physical mechanisms rather than formal algorithms to
provide random digits.

 Hotbits project: www.fourmilab.ch/hotbits
 Use radioactive decay.
 Run by Autodesk founder John Walker
 If you connect to this site, you can listen to the Geiger counter ticks.

 Random.org site: www.random.org
 Sample atmospheric noise by using a radio tuned between stations.
 The site also provides a general discussion of random numbers.

 Lavarnd site: www.lavarnd.org
 Take digital photographs of a webcam with its lens cap on.
 Rely on thermal “noise”

 Lavarand site: lavarand.sgi.com
 Take digital photographs of the patterns

made by colored lava lamps.

rng

13

 The sequence of numbers produced by rand is determined
by the internal settings of the uniform random number
generator that underlies rand, randi,and randn.

 You can control that shared random number generator using
rng.
 This can be useful for controlling the repeatability of your

results.

 http://www.mathworks.com/support/2013b/matlab/8.2/
demos/controlling-random-number-generation.html

(random number generator)

rng default/shuffle

14

 Every time you start MATLAB, the
generator resets itself to the same state.

 You can reset the generator to the startup
state at any time in a MATLAB session
(without closing and restarting MATLAB)
by
 rng('default')
 rng default

 To avoid repeating the same results when
MATLAB restarts:
 Execute the command
 rng('shuffle')
 rng shuffle
 It reseeds the generator using a different seed

based on the current time.

rng: Save and Restore the Generator
Settings

15

Save the current
generator settings in
s

Restore the saved
generator settings

The first call to rand
changed the state of the
generator, so the second
result is different.

References

16

 Chapter 3 (Random Numbers) in Sheldon M.
Ross. “Simulation.”
Academic Press, 2012, 5th Edition

 Chapter 9 (p. 245-252) in Peter Olofsson,
“Probabilities The Little Numbers That Rule
Our Lives”, Wiley, 2006

 Chapter 9 (Random Numbers) in Cleve
Moler. “Numerical Computing with
MATLAB.” SIAM, 2004

 Chapter 7 (Random Numbers) (Sections 7.0-
7.1.1) in W. H. Press, S. A. Teukolsky, W. T.
Vetterling, B. P. Flannery. “Numerical Recipes:
The Art of Scientific Computing.” Cambridge,
2007, 3rd Edition.

References

17

 Park, S.K., and K.W. Miller. “Random Number Generators:
Good Ones Are Hard to Find.” Communications of the ACM,
31(10):1192–1201. 1998.

 C. Moler, Random thoughts, “10^435 years is a very long
time”, MATLAB News and Notes, Fall, 1995

Using Excel for Statistical Analysis

18

 In addition to its spreadsheet functions, Excel provides a number
of standard statistical and graphing procedures.

 Excel is not recommended for statistical analysis, beyond very
basic descriptive statistics and getting a feel for your data.

 Microsoft attempted to implement the Wichmann-Hill (1982)
RNG in Excel 2003 and failed; it did not just produce numbers
between zero and unity, it would also produce negative numbers.
 Microsoft issued a patch for Excel 2003 and Excel 2007 that

incorrectly fixed the problem
 In 2008, McCullough and Heiser showed that whatever RNG it is that

Microsoft has implemented in these versions of Excel, it is not the
Wichmann-Hill RNG.

 Microsoft has failed twice to implement the dozen lines of code that
define the Wichmann-Hill RNG.

[http://dl.acm.org/citation.cfm?id=1377404]

Ex. Generating a Sequence of Coin
Tosses

19

 Use 1 to represent Heads; 0 to represent Tails

 rand(1,120) < 0.5

hist function

20

 Create histogram plot
 hist(data) creates a histogram bar plot of data.

 Elements in data are sorted into 10 equally spaced bins along the x-axis
between the minimum and maximum values of data.

 Bins are displayed as rectangles such that the height of each rectangle
indicates the number of elements in the bin.

 If data is a vector, then one histogram is created.
 If data is a matrix, then a histogram is created separately for each column.

 Each histogram plot is displayed on the same figure with a different color.

 hist(data,nbins) sorts data into the number of bins specified
by nbins.

 hist(data,xcenters)
 The values in xcenters specify the centers for each bin on the x-axis.

hist function: Example

21

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

The width of each bin is
5 1 0.4
10




max
min

histc vs hist

22

 N = hist(U,centers)
 Bins’ centers are defined by the vector centers.

 The first bin includes data between -inf and the first center and the last bin includes
data between the last bin and inf.

 N(k) count the number of entries of vector U whose values falls inside the
kth bin.

 N = histc(U,edges)
 Bins’ edges are defined by the vector edges.
 N(k) count the value U(i) if
edges(k) ≤ U(i) < edges(k+1).

 The last (additional) bin will count any values of U that match
edges(end).

 Values outside the values in edges are not counted.
 May use -inf and inf in edges.

 [N,BIN_IND] = histc(U,EDGES) also returns vector
BIN_IND indicating the bin index that each entry in U sorts into.

Example: histc

23

>> p_X = [1/6 1/3 1/2];
>> F_X = cumsum(p_X)

F_X =

0.1667 0.5000 1.0000

>> U = rand(1,5)

U =

0.2426 0.9179 0.9409 0.1026 0.8897

>> [dum,V] = histc(U,[0 F_X])

dum =

1 1 3 0

V =

2 3 3 1 3

Ex. Generating a Sequence of 120 Coin
Tosses

24

 Use 1 to represent Heads; 0 to represent Tails

 rand(20,6) < 0.5 Arrange the results in a 20×6 matrix.

randi function: Example

25

close all; clear all;
N = 1e3; % Number of trials (number of times that the coin is tossed)
s = (rand(1,N) < 0.5); % Generate a sequence of N Coin Tosses.
 % The results are saved in a row vector s.
NH = cumsum(s); % Count the number of heads
plot(NH./(1:N)) % Plot the relative frequencies

LLN_cointoss.m

Same as
randi([0,1],1,N);

